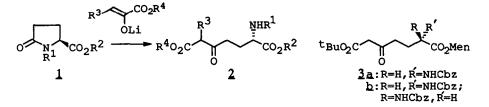
Tetrahedron Letters, Vol.29, No.34, pp 4303-4304, 1988 Printed in Great Britain

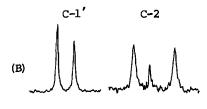

REGIOSELECTIVE MONO-ADDITION OF LITHIUM ENOLATES TO N-CARBAMOYL-L-PYROGLUTAMATES

Tomihisa Ohta, Toshihiko Kimura, Nobuaki Sato, and Shigeo Nozoe* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract: Regioselective mono-addition of lithium enolate of esters to Ncarbamoyl-L-pyroglutamates (<u>1</u>) gave excellent yields of (<u>2S</u>)-5-oxoamino acid derivatives (<u>2</u>) which were found to be an effective synthon for syntheses of carbapenams and carbapenems.

N-Carbamoyl-L-pyroglutamates (1) have been proven to be the effective chiral templates for the synthesis of nitrogen-containing natural products.¹ We have shown that lithium diisopropylamide (LDA) deprotonates only at C-4 of pyroglutamates (1) in spite of well known enolization of esters.¹ According to the above finding, we planned the ester enolate addition at C-5 of pyroglutamates (1) with the concept of direct modification with the least epimerization at C-2. Here we wish to describe the regioselective mono-addition reaction of lithium enolate of esters to N-carbamoy1-L-pyroglutamates (1) to afford 5-oxoamino acid derivatives (2) in excellent yields as shown in Table 1. Because of having the 4-oxoamide structure, the esters (2) will be used as an effective synthon of pyrrolidine derivatives or carbapenams. As a typical procedure, t-butyl acetate (0.54 ml, 4.00 mmol) in THF (4 ml) was added to LDA in THF (48 ml) prepared from diisopropyl amine (0.68 ml, 4.80 mmol) and 15% n-butyl lithium in n-hexane (3.07 ml, 4.80 mmol) at -78 °C. After stirring the mixture for 30 min, pyroglutamate (1a, 1.41 g, 4.00 mmol) in THF (15 ml) was added. The reaction mixture was stirred for 30 min at -78 ^OC, and then quenched with AcOH-MeOH (1:1, 2ml). Silica gel chromatography (n-hexane-EtOAc, 4:1 elution) of the crude product afforded the keto-ester $(2a, 1.65 g), [\alpha]_{D}^{20} - 4.58^{O}$ (c 1.27, CHCl₃).

The preservation of the optical activity throughout the reaction was confirmed by 13 C NMR (125.65 MHz). Proton-decoupled 13 C DEPT² spectrum of



m-b1- 1

(-)-Menthyl ester (<u>3a</u>) prepared from the pyroglutamate (<u>1i</u>, R^1 =Boc, R^2 =(-)menthyl) and the ester enclate (R^3 =H, R^4 =^tBu) showed no signal due to the (<u>2R</u>)-isomer as shown in Fig. 1.^{3,4} The 5-oxoamino acid derivative (<u>2c</u>) was found to be an effective synthon for a synthesis of carbapenem antibiotic PS-5 which will be described in an accompanying report.

Table 1. Reaction of Pyroglutamates (1)					
with Ester Enolates					
1	R ¹	R ²	R ³	R ⁴	<u>2</u> (%)
<u>1a</u>	Cbz	Bz1	н	t _{Bu}	95
<u>1b</u>	Cbz	Bzl	Me	t _{Bu}	93
<u>1c</u>	Cbz	Bzl	Et	t_{Bu}	81
<u>1d</u>	Cbz	Bz1	ⁱ Pr	t _{Bu}	83
<u>1e</u>	Cbz	Bzl	Bzl	t _{Bu}	81
<u>1f</u>	Cbz	Me	Н	t _{Bu}	84
<u>1g</u>	Cbz	Me	Et	Bzl	71
<u>1h</u>	Boc	Bz1	н	^t Bu	97

Reportion of Duroglutamator (1)

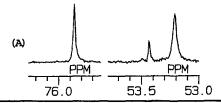


Fig. 1. Proton-Decoupled DEPT Spectra of <u>3a</u> (A) and <u>3b</u> (B).

References and Notes

- T. Ohta, A. Hosoi, T. Kimura, and S. Nozoe, Chemistry Lett., 2091 (1987);
 T. Ohta, A. Hosoi, and S. Nozoe, Tetrahedron Lett., <u>29</u>, 329 (1988).
- D. T. Pegg, D. M. Doddrell, and M. R. Bendall, J. Chem. Phys., <u>77</u>, 2745 (1982).
- 3. (-)-Menthyl (-)- (\underline{S}) -2-benzyloxycarbamido-6- \underline{t} -butoxycarbonyl-5-oxoheptanoate $(\underline{3a})$: $[\alpha]_D^{25}$ -32.2° (c 1.28, CHCl₃); δ_H (CDCl₃, 500 MHz) 0.74 (3H, d, J=6.8 Hz), 0.88 (3H, d, J=6.8 Hz), 1.46 (9H, s), 3.33 (2H, s), 4.28-4.38 (1H, m), 4.72 (1H, dt, <u>J</u>=4.3, 11.1 Hz), 5.10 (2H, s), 5.46 (1H, d, \underline{J} =7.7 Hz), 7.35 (5H, s); δ_{C} (CDCl₃, 125.65 MHz, DEPT) 16.3, 20.70, 21.96, 23.34, 26.16, 26.63, 27.96, 27.99, 28.08, 28.30, 31.38, 34.11, 38.62, 40.59, 46.84, 50.56, 53.21, 67.00, 75.86, 128.12, 128.20, 128.53; (-)-Menthyl (\underline{RS}) -2-benzyloxycarbamido-6- \underline{t} -butoxycarbonyl-5-oxoheptanoate (3b): δ_{H} (CDCl₃, 500 MHz) 0.73, 0.74 (3H, each d, J=6.8 Hz), 0.89 (3H, d, \underline{J} =6.8 Hz), 0.91 (3H, d, \underline{J} =6.8 Hz), 1.45, 1.46 (9H, each s), 3.32, 3.33 (2H, each s), 4.28-4.37 (1H, m), 4.72, 4.67 (1H, each dt, J=4.3, 11.1 Hz), 5.09 (2H, s), 5.44, 5.46 (1H, each d, $\underline{J}=7.7$ Hz), 7.34, 7.35 (5H, each s); δ_C (CDCl₃, 125.65 MHz, DEPT) 15.83, 16.23, 20.70, 20.81, 21.94, 21.96, 23.01, 23.34, 26.06, 26.16, 26.34, 26.63, 27.95, 28.30, 28.35, 28.37, 31.38, 31.40, 34.11, 38.62, 40.59, 40.66, 46.83, 50.53, 50.56, 53.21, 53.57, 67.01, 75.87, 76.02, 128.09, 128.12, 128.19, 128.20, 128.53, 128.56.
- 4. DEPT conditions: $\theta = \pi/4$, acquisition time 1.311 s, repitition delay 4.689 s, scans 256.

(Received in Japan 6 May 1988; accepted 24 June 1988)